Crystal and molecular structure of a segment of a stacked face-to-face ferrocene polymer *

Bruce M. Foxman ${ }^{\star}$, Dana A. Gronbeck and Myron Rosenblum *
Department of Chemistry, Brandeis University, Waltham, MA 02254 (USA)
(Received December 20th, 1990)

Abstract

The crystal and molecular structure of a fragment of a face-to-face metallocene polymer, the [2,3]-oligomer($2 \mathrm{a}, n=2$) of 1,8-diferrocenylnaphthalene(1a), has been determined in order to better define the structural features of the polymer. The molecular structure of this compound shows the same form and magnitude of molecular distortions as those found in the monomeric unit la. An unusual feature of the oligomer is the cis arrangement of the two naphthalene nuclei, which brings several of the carbon centers on each naphthalene ring in close proximity. These structural aspects are discussed in the context of possible structures for the related polymer.

Single crystals comprising stacked arrays of donor-acceptor complexes represent solids of current interest as low dimensional organic conductors and superconductors [1]. Within this general structural class, a number of organometallic molecular systems, which possess such a columnar structure, through either bifacial metal coordination to a single unsaturated ligand or coordination to two such ligands joined in a stack, have been prepared [2]. We recently reported the synthesis of a new member of this class 1 la and of polymers 2 derived from it, based on cyclopentadienylmetal complexes, in which the individual metallocene units are held proximate and cofacial as peri substituents on a naphthalene ring [3].

1a: $M=F e ; 1 b: M=R u$
2a: $M=F e ; 2 b: M=R u$
Although the crystal structures of 1a and 1 b and of the monocation $1 \mathrm{a}^{+}$have been determined [4], it was essential to gain some insight into the structure of the

[^0]

Fig. 1. Molecular structure of $\mathbf{2 a}$, showing atomic numbering.
polymeric system, since electronic band structure would be expected to be a sensitive function of the polymer structure, as well as the identity of both the metal and its oxidation state. Some inferences of chain mobility in oligomeric fragments of 1a and 1b, based on proton NMR spectra data, have been made [3], but these do not resolve the question of the polymer structure in the solid state. In the course of this work we had isolated and purified a number of oligomers of 1a. We have now succeeded in crystallizing the [2,3]-oligomer, $2 \mathrm{a}(n=2$), and report herein its crystal structure.

The molecular structure of this substance is shown in Fig. 1 and an edge-on view of the naphthalene plane is shown in Fig. 2. A salient feature of the oligomer structure is that is preserves the two significant molecular distortions found in the structures of 1,8 -diferrocenylnaphthalene (1a) and 1,8-diruthenocenylnaphthalene (1b). These are the splaying of face-to-face cyclopentadienyl rings, and the rotation of these rings (including the ferrocene nucleus itself) from an orientation perpendicular to the average naphthalene ring. Both of these distortions are attributable to π-electron repulsive interactions of the face-to-face cyclopentadienyl rings, and their magnitudes are nearly identical in 1,8-diferrocenylnaphthalene (1a) and in the [2,3]-oligomer. Two further distortions which relieve electron repulsions are also observed in 1a, 1b and 2a. These are the out-of-plane bending of naphthalene to cyclopentadienyl bonds and the distortion of the naphthalene ring itself. The data are summarized in Table 1, while bond distances and angles for the oligomer are presented in Table 2.

A further unusual feature of the oligomer molecular structure is the proximate, or cis arrangement of naphthalene nuclei, which brings several of the carbon centers on each naphthalene ring to within van der Waals contact distances. Thus, the

Fig. 2. View of the molecular structure of $2 a$ rotated 90° (relative to Fig. 1).

Table 1
Molecular distortions in 1,8-dimetallocenylnaphthalenes ${ }^{a}$

Compound	Rotation of Cp ring from 90° orientation $\left(^{\circ}\right)$	Cp ring splaying angle (
		Displacement of ipso-Cp atoms from naphthalene best plane (\AA)	
1,8-Diferrocenyl-naphthalene (1a)	$45.0(1), 47.0(1)$	$29.1(1)$	$-0.611(3)$
1,8-Diruthenocenylnaphthalene (1b)	$42.0(1)$	$26.2(2)$	$\pm 0.577(4)$
Oligomer (2a)	$48.5(4), 43.4(4)$	$28.0(4)$	$-0.490(13)$
	$44.8(4), 46.4(4)$	$22.8(9)$	$+0.415(13)$
			$-0.516(13)$

${ }^{a}$ Numbers in parentheses in this and following tables are estimated standard deviations in the least significant digit.
distances separating $\mathrm{C} 6-\mathrm{C} 14, \mathrm{C} 7-\mathrm{C} 14, \mathrm{C} 8-\mathrm{C} 12, \mathrm{C} 9-\mathrm{C} 12$ fall within the range 3.32-3.46 \AA. These are close to, but somewhat shorter than the equilibrium $C-C$ distances derived for parallel stacked benzene dimers by Lii and Allinger from semiempirical molecular mechanics methods [5] (3.46-3.69 \AA), or from the ab initio calculations of Karlström [6] ($3.75 \AA$), but are better in accord with the equilibrium value of $3.44 \AA$ calculated by Evans and Watts [7].

Inspection of the crystal structure (Fig. 3) reveals no unusually short intermolecular contacts. The only $\mathrm{C}-\mathrm{C}$ contacts $<3.5 \AA$ are: $\mathrm{C} 12-\mathrm{C} 17(x-1, y, z), 3.43 \AA$; C22-C46 $(x-1, y-1, z), 3.44 \AA$; and C23-C46 $(x-1, y-1, z), 3.38 \AA$. An infinite (but only partial) intermolecular overlap of the C11-C20 naphthalene rings along the relatively short a axis is indicated by the $\mathrm{C} 12-\mathrm{C} 17$ contact.

The cis structure may be stabilized by dispersion forces, but these cannot be very large. Estimates of the intermolecular potential between two stacked benzene rings range from $-0.55 \mathrm{kcal} \mathrm{mol}^{-1}$ from $a b$ initio calculations [7], through 1.82 kcal mol^{-1} for the most recent MM3 calculations [5], to $2.54 \mathrm{kcal} \mathrm{mol}^{-1}$ from a semi-empirically derived potential function [6]. It appears unlikely that crystal lattice forces contribute significantly to the observed oligomer conformation in the solid state, since no unusually short contacts are observed (vide supra). The presence of the trans conformer in solutions of the [2,3]-oligomer is clearly evidenced by NMR spectral data, which shows only two proton resonances for each of the two structurally disparate substituted cyclopentadienyl rings. Each signal corresponds to a pair of $\alpha\left(\mathrm{C}_{2,5}\right)$ and of $\beta\left(\mathrm{C}_{3,4}\right)$ protons on one of these cyclopentadienyl rings, which become chemically shift identical through synchronous rotation of the face-to-face cyclopentadienyl rings about their ipso carbon centers. Such rotation is not possible for the oligomer in the cis conformation, but is allowed in the trans isomer. Furthermore, the barrier for cis-trans interconversion must be small, since the ring rotational barrier in ferrocene itself is less than $5 \mathrm{kcal} \mathrm{mol}^{-1}$ [8].

To the extent that dispersion forces may stabilize a cis conformation of ferro-cene-based oligomers, such stabilization would be expected to be smaller in the oligomers based on ruthenocene [4] since the cyclopentadienyl ring separation in ruthenocene is $0.3 \AA$ larger than in ferrocene and hence naphthalene ring overlap in

Table 2
Bond lengths (A) and angles (${ }^{\circ}$) for $\mathrm{C}_{50} \mathrm{H}_{38} \mathrm{Fe}_{3}$

Fe1-C21	2.04(2)	Fe3-C50	2.04(2)	C22-C23	1.41(2)
Fel-C22	2.04(1)	C1-C2	1.40(2)	C23-C24	1.39(2)
Fel-C23	2.05(2)	Cl-C10	1.43(2)	C24-C25	1.41(2)
Fel-C24	2.02(2)	C1-C26	1.46(2)	C26-C27	1.43(2)
Fel-C25	2.04(2)	C2-C3	1.41(2)	C26-C30	1.42(2)
Fel-C26	2.08(1)	C3-C4	1.34(2)	C27-C28	1.42(2)
Fe1-C27	2.03(1)	C4-C5	1.40(2)	C28-C29	1.39(2)
Fel-C28	2.05(1)	C5-C6	1.40(2)	C29-C30	1.41(2)
Fe1-C29	2.04(1)	C5-C10	1.44(2)	C31-C32	1.43(2)
Fe1-C30	2.04(1)	C6fs-C7	1.33(2)	C31-C35	1.41(2)
Fe2-C31	2.09(1)	C7-C8	1.42(2)	C32-C33	1.42(2)
Fe2-C32	2.07(1)	C8-C9	1.37(2)	C33-C34	1.38(2)
Fe2-C33	2.04(1)	C9-C10	1.45(2)	C34-C35	1.42(2)
Fe2-C34	2.03(1)	C9-C31	1.49(2)	C36-C37	1.41(2)
Fe2-C35	2.03(1)	C11-C12	1.38(2)	C36-C40	1.42(2)
Fe2-C36	2.08(1)	C11-C20	1.42(2)	C37-C38	1.44(2)
Fe2-C37	2.05(1)	C11-C36	1.50(2)	C38-C39	1.38(2)
Fe2-C38	2.04(1)	C12-C13	1.40(2)	C39-C40	1.42(2)
Fe2-C39	2.04(1)	C13-C14	1.33(2)	C41-C42	1.39(2)
Fe2-C40	2.05(1)	C14-C15	1.40(2)	C41-C45	1.40(2)
Fe3-C41	2.08(1)	C15-C16	1.39(2)	C42-C43	1.41(2)
Fe3-C42	2.04(1)	C15-C20	1.45(2)	C43-C44	1.38(2)
Fe3-C43	2.02(1)	C16-C17	1.35(2)	C44-C45	1.42(2)
Fe3-C44	2.03(1)	C17-C18	1.40(2)	C46-C47	1.41(2)
Fe3-C45	2.01(1)	C18-C19	1.38(2)	C46-C50	1.40(2)
Fe3-C46	2.05(2)	C19-C20	1.44(2)	C47-C48	1.38(3)
Fe3-C47	2.04(2)	C19-C41	1.49(2)	C48-C49	1.38(3)
Fe3-C48	2.05(2)	C21-C22	1.38(2)	C49-C50	1.35(2)
Fe3-C49	2.04(2)	C21-C25	1.42(2)		
C2-C1-C10		117.(1)	C12-C13-C14		119.(1)
C2-C1-C26		118.(1)	C13-C14-C15		122.(1)
C10-C1-C26		125.(1)	C14-C15-C16		120.(1)
C1-C2-C3		123.(1)	C14-C15-C20		119.(1)
C2-C3-C4		117.(1)	C16-C15-C20		121.(1)
C3-C4-C5		124.(1)	C15-C16-C17		121.(1)
C4-C5-C6		121.(1)	C16-C17-C18		120.(1)
C4-C5-C10		118.(1)	C17-C18-C19		122.(1)
C6-C5-C10		121.(1)	C18-C19-C20		119.(1)
C5-C6-C7		122.(1)	C18-C19-C41		118.(1)
C6-C7-C8		120.(1)	C20-C19-C41		123.(1)
C7-C8-C9		121.(1)	C11-C20-C15		117.(1)
C8-C9-C10		120.(1)	C11-C20-C19		127.(1)
C8-C9-C31		116.(1)	C15-C20-C19		116.(1)
C10-C9-C31		124.(1)	C22-C21-C25		108.(1)
C1-C10-C5		118.(1)	C21-C22-C23		110.(1)
C1-C10-C9		126.(1)	C22-C23-C24		106.(1)
C5 C10-C9		116.(1)	C23 C24-C25		110.(1)
C12-C11-C20		119.(1)	C21-C25-C24		106.(1)
C12-C11-C36		117.(1)	C1-C26-C27		127.(1)
C20-C11-C36		124.(1)	C1-C26-C30		128.(1)
C11-C12-C13		122.(1)	C27-C26-C30		105.(1)
C26-C27-C28		109.(1)	C37-C38-C39		109.(1)

Table 2 (continued)

C27-C28-C29	$108 .(1)$	C38-C39-C40	$109 .(1)$
C28-C29-C30	$108 .(1)$	C36-C40-C39	$107 .(1)$
C26-C30-C29	$109 .(1)$	C19-C41-C42	$128 .(1)$
C9-C31-C32	$124 .(1)$	C19-C41-C45	$125 .(1)$
C9-C31-C35	$128 .(1)$	C42-C41-C45	$107 .(1)$
C32-C31-C35	$108 .(1)$	C41-C42-C43	$109 .(1)$
C31-C32-C33	$106 .(1)$	C42-C43-C44	$108 .(1)$
C32-C33-C34	$111 .(1)$	C43-C44-C45	$107 .(1)$
C33-C34-C35	$107 .(1)$	C41-C45-C44	$109 .(1)$
C31-C35-C34	$108 .(1)$	C47-C46-C50	$104 .(1)$
C11-C36-C37	$128 .(1)$	C46-C47-C48	$111 .(2)$
C11-C36-C40	$124 .(1)$	C47-C48-C49	$105 .(2)$
C37-C36-C40	$109 .(1)$	C48-C49-C50	$111 .(2)$
C36-C37-C38	$106 .(1)$	C46-C50-C49	$109 .(2)$

the cis conformation of the corresponding ruthenocene oligomer would be diminished.

Partially oxidized forms of these face-to-face oligomeric and polymeric metallocenses would also be expected to prefer a trans conformation, since oxidation of a metal center results in a decrease in electronic charge on the cyclopentadienyl rings and lowered repulsion of face-to-face rings [4]. This leads in turn to a smaller cyclopentadienyl twist angle (30° in $1 \mathrm{a}^{+}$vs $\approx 45^{\circ}$ in $1 \mathrm{a}, \mathrm{b}$ and 2 a), and consequently to poorer naphthalene ring overlap in the cis conformation of a partially oxidized oligomer or polymer.

Extrapolation of the molecular parameters observed in the oligomer to the structure of a trans polymer shows it to be roughly linear with respect to the ferrocene nuclei, with a small sinusoidal deviation from linearity due to the ring splaying distortion in the monomer unit. By contrast, a polymer derived from the cis form would be expected to adopt a helical structure as a consequence of the interplay of cyclopentadienyl ring splaying and the rotation of these rings through an angle of $\approx 45^{\circ}$ from an orientation perpendicular to the naphthalene nucleus. Based upon the structure of the oligomer, such a helix may be estimated to have a diameter of $68 \AA$ with 16 monomer units per turn of the helix.

Fig. 3. Stereoview of the unit cell of $\mathbf{2 a}$.

Experimental

Preparation of the oligomer $2 a(n=2)$

This compound was prepared according to the method of Arnold et al. [3], by the palladium-catalyzed coupling reaction of $1,1^{\prime}$-bis-(chlorozinc)ferrocene with 1,8 -diiodonaphthalene. The crude product containing various oligomeric fractions was purified by flash chromatography (silica/ 20% (v / v) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes), and the fractions containing the component with $R_{\mathrm{f}}=0.32$ (by TLC, using silica/20\% (v/v) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes) were combined to yield 17 mg (1.8\%) of the oligomer as an orange solid: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.51-3.54\left(\mathrm{t}, 4 \mathrm{H}, J 2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right.$-inner

Table 3

Data for the X-ray diffraction study of $\mathrm{C}_{50} \mathrm{H}_{38} \mathrm{Fe}_{3}$

Crystal data at $21(1)^{\circ} \mathrm{C}$

Crystal system: monoclinic
Space group: $P 2_{1} / c\left[C_{2 h}^{5} ;\right.$ No. 14]
a $6.396(3) \AA$
b 18.797(9) \AA
c $29.820(15) \AA$

- $93.48(5)^{\circ}$
$V 3578.5(54) \AA^{3}$
$\mu 12.36 \mathrm{~cm}^{-1}\left(\mathrm{Mo}-K_{\bar{\alpha}}\right)$
Cell constant determination: 12 pairs of $\pm(h k l)$ and refined $2 \theta, \omega, \chi$ values in the range $17 \leq|2 \theta| \leq 26^{\circ}$ $\left(\lambda\left(\mathrm{Mo}-\mathrm{K}_{\bar{\alpha}}\right) 0.71073 \AA\right)$

Measurement of intensity data

Radiation: Mo- $K_{\bar{\alpha}}$, graphite monochromator
Reflections measured: $h, k, \pm l\left(3 \leqslant 2 \theta \leqslant 40^{\circ}\right)$
Scan type, speed: ω, vble, $2.46-5.33^{\circ} \mathrm{min}^{-1}$
Scan range: 1.5°, with a 1.5° displacement in ω from K_{α} position for background; $t_{\mathrm{p}} / \boldsymbol{t}_{\mathrm{b}}=0.5$
No. of reflections measured: 4103; 3316 in unique set
Standard reflections, period: 80; 113, 10 $\overline{4}, 02 \overline{5}$; variation $\leq \pm 3 \sigma(I)$ for each
Absorption correction; empirical, normalized transmission factors $0.827-1.000 ; 04 \overline{5} ; 1,6, \overline{1} \overline{0}$ reflections
Data reduction: as before ${ }^{b}$
Statistical information: $R_{\mathrm{av}}=0.044$ (0 kl reflections)

Refinement

Refinement ${ }^{\text {c }}$, with 1802 data for which $I \geqslant 1.96 \sigma(I)$
Weighting of reflections: as before ${ }^{c}, p=0.04$
Solution: Patterson, difference-Fourier
Refinement ${ }^{d}$: full-matrix least-squares, with:
anisotropic temperature factors for Fe atoms;
isotropic temperature factors for C , fixed H atoms;
$R=0.0693 ; R_{\mathrm{w}}=0.0629 ; S D U=1.46$;
R (structure factor calen with all 3316 reflections) $=0.189$
Final difference map: 15 peaks, $0.40-0.83 \mathrm{e}^{\AA^{-3}}$ near Cp C atoms; other peaks random and $\leqslant 0.40 \mathrm{e}$ \AA^{-3}

[^1]Table 4
Atomic coordinates for $\mathrm{C}_{50} \mathrm{H}_{38} \mathrm{Fe}_{3}{ }^{a}$

Atom	x	y	z	$B\left(\AA^{2}\right)$
Fel	-0.2645(3)	-0.0101(1)	0.42036(7)	2.87(5)
Fe 2	0.0161(3)	0.3284(1)	$0.44096(7)$	2.57(5)
Fe 3	0.3418(4)	0.6411(1)	0.37668 (7)	3.67(5)
C1	-0.116(2)	0.1059(7)	0.3520(4)	2.6(3)
C2	-0.215(2)	0.0717(8)	0.3147(5)	3.7(3)
C3	-0.140(2)	0.0751(8)	0.2714(5)	4.4(4)
C4	0.039(2)	0.1103(8)	0.2666(5)	3.9(4)
C5	0.144(2)	0.1497(7)	0.3008(4)	3.3(3)
C6	0.327(2)	0.1872(8)	0.2933(5)	4.0(4)
C7	0.422(2)	$0.2277(8)$	0.3249(5)	4.2(4)
C8	0.330(2)	0.2378(7)	$0.3664(5)$	3.0(3)
C9	0.147(2)	0.2039(7)	0.3756(4)	2.2(3)
C10	0.054(2)	0.1527(7)	0.3439(4)	2.8(3)
C11	0.099(2)	0.3932(7)	0.3432(4)	2.2(3)
C12	-0.036(2)	0.3466 (7)	0.3206(4)	3.0(3)
C13	-0.012(2)	0.3258(8)	0.2760(5)	3.5(3)
C14	0.155(2)	$0.3486(8)$	0.2554(5)	3.5(3)
C15	0.299(2)	0.3968(7)	0.2755(4)	3.0(3)
C16	0.475(2)	0.4168(8)	0.2537(5)	3.5(3)
C17	0.611(2)	0.4651(8)	0.2721(5)	3.4(3)
C18	0.565(2)	$0.5010(8)$	0.3116(4)	3.4(3)
C19	0.391(2)	0.4843(7)	0.3347 (4)	2.2(3)
C20	$0.260(2)$	0.4256(7)	0.3195(4)	2.1(3)
C21	-0.215(2)	-0.0838(8)	0.3718(5)	4.0(4)
C22	-0.423(2)	-0.0840(8)	0.3816(5)	4.3(4)
C23	0.441(2)	-0.1001(9)	0.4275(5)	5.0(4)
C24	-0.236(2)	-0.1098(8)	0.4454(5)	4.0(4)
C25	-0.094(2)	-0.1000(8)	0.4118(5)	4.4(4)
C26	-0.191(2)	0.0902(7)	0.3962(4)	2.1(3)
C27	-0.066(2)	0.0719(7)	0.4357(4)	1.9(3)
C28	-0.200(2)	$0.0611(8)$	0.4713(5)	3.8(4)
C29	-0.406(2)	0.0689(8)	0.4545(5)	3.6(4)
C30	-0.403(2)	0.0866(7)	0.4086(4)	2.7(3)
C31	0.055(2)	0.2241(6)	0.4183(4)	1.6(3)
C32	0.173(2)	0.2358(8)	0.4601(5)	3.0(3)
C33	0.025(2)	0.2548(8)	0.4914(5)	3.4(3)
C34	-0.174(2)	0.2584(8)	0.4707(5)	3.4(3)
C35	-0.157(2)	0.2405(7)	0.4248(4)	3.0(3)
C36	0.073(2)	$0.4039(7)$	0.3924(4)	$2.4(3)$
C37	0.232(2)	0.4051(7)	0.4275(4)	2.1(3)
C38	0.129(2)	0.4218(8)	0.4678(5)	3.0(3)
C39	-0.083(2)	0.4277(7)	0.4576(5)	3.1(3)
C40	-0.123(2)	0.4160(8)	0.4107(5)	3.0(3)
C41	0.340(2)	0.5308(7)	0.3731 (4)	2.6(3)
C42	0.474(2)	0.5545(8)	0.4086(5)	3.4(4)
C43	0.358(2)	0.5954(8)	0.4380(5)	3.7(4)
C44	0.152(2)	0.5971(8)	0.4211(5)	3.2(3)
C45	0.142(2)	0.5588(7)	0.3799(5)	3.1(3)
C46	0.503(3)	0.735(1)	0.3829(6)	6.4(5)
C47	0.287(3)	0.7481(9)	0.3736(6)	6.2(5)
C48	0.217(3)	0.717(1)	0.3337(6)	6.7(5)
C49	0.393(3)	0.6879(9)	0.3167(6)	6.3(5)
C50	0.563(3)	0.6975(9)	0.3452(6)	5.8(4)

[^2]Cp), 3.73-3.76 (t, 4H, J $2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}$-inner Cp), 3.74-3.77 (t, 4H, J $2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}$-outer Cp), 3.79-3.81 (t, $4 \mathrm{H}, J 2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}$-outer Cp), $7.05-7.11\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J 8.1,7.2 \mathrm{~Hz}\right.$, H_{3}), 7.39-7.45 (dd, $2 \mathrm{H},{ }^{3}{ }^{3} 8.1,7.2 \mathrm{~Hz}, \mathrm{H}_{6}$), $7.61-7.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2,4}\right), 7.68-7.73$ (dd, $\left.2 \mathrm{H},{ }^{3} J 8.1,{ }^{4} \mathrm{~J} 1.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 8.00-8.04\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J 7.2,{ }^{4} J 1.5 \mathrm{~Hz}, \mathrm{H}_{7}\right)$.

Structure determination of $2 a$

X-Ray quality crystals of this compound were grown by vapor diffusion from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes at $-20^{\circ} \mathrm{C}$. An orange-red specimen, measuring $0.36 \times 0.16 \times 0.08$ mm , was mounted and used for the subsequent data collection. Laue photographs indicated the crystal (and all available samples) to be of only moderate quality; significant data were not observed beyond $d 1 \AA$. The crystal was then transferred to a Supper No. 455 goniometer and optically centered on a Syntex $P 2_{1}$ diffractometer. Operations were performed as described previously [9]. The analytical scattering factors of Cromer and Waber were used; real and imaginary components of anomalous scattering for Fe were included in the calculations [10]. All computational work was carried out on a VAX 8650 computer using the Enraf-Nonius SDP software package. Details of the structure analysis, in outline form, are presented in Table 3. Atomic coordinates for all nonhydrogen atoms appear in Table 4. Tables S-I, Anisotropic displacement parameters, S-II, Hydrogen atomic coordinates and S-III, Observed and calculated structure amplitudes are available upon request from the authors.

Acknowledgements

This research was supported in part by grants from the Department of Energy (85-ER-45193, M.R.), and the National Science Foundation (DMR-8812427, B.M.F.).

References

1 J.M. Williams, M.A. Beno, H.H. Wang, P.C. Leung, T.J. Emge, U. Geiser and K.D. Carlson, Acc. Chem. Res., 18 (1988) 261; D.O. Cowan and F.M. Wiygul, Chem. Eng. News, 64 (1986) 28; J.S. Miller (Ed.), Extended Linear Chain Compounds, Plenum Press, New York, Vol. 1, 2, 1982, Vol. 3, 1983.

2 H. Werner, Angew. Chem., Int. Ed. Engl., 16 (1977) 1; D.C. Beer, V.R. Miller, L.G. Sneddon, R.N. Grimes, M. Matthew and G.J. Palenik, J. Am. Chem. Soc., 95 (1973) 3046; W. Siebert, Angew. Chem., Int. Ed. Engl., 24 (1985) 943; R.T. Swann, A.W. Hanson and V. Boekelheide, J. Am. Chem. Soc., 108 (1986) 3324; R.H. Voegeli, H.C. Kang, R.G. Finke and V. Boekelheide, ibid., 108 (1986) 7010; A. Sudhakar, T.J. Katz and B.-W. Yang, ibid., 108 (1986) 2790; K. Jonas, W. Rüsseler, K. Angermund and C. Krüger, Angew. Chem., Int. Ed. Engl., 25 (1986) 927; R. Gleiter, M. Karcher, D. Kratz, S. Rittinger and V. Schehlmann, in H. Werner and G. Erker (Eds.), Organometallics in Organic Synthesis 2, Springer Verlag, Berlin, 1989, p. 109.
3 R. Arnold, S.A. Matchett and M. Rosenblum, Organometallics, 7 (1988) 2261.
4 M.-T. Lee, B.M. Foxman and M. Rosenblum, Organometallics, 3 (1985) 539; R. Arnold, B.M. Foxman and M. Rosenblum, ibid., 7 (1988) 1253.
5 J.-H. Lii and N.L. Allinger, J. Am. Chem. Soc., 111 (1989) 8576.
6 G. Karlström, P. Linse, A. Wallqvist and B. Jönsson, J. Am. Chem. Soc., 105 (1983) 3777.
7 D.J. Evans and R.O. Watts, Mol. Phys., 31 (1976) 83.
8 L.N. Mulay and A. Attalla, J. Am. Chem. Soc., 85 (1963) 702; M.K. Makova, E.V. Lonova, Yu.S. Karimov and N.S. Kochetkova, J. Organomet. Chem., 55 (1973) 185; A. Haaland and J.E. Nilsson, Acta Chem. Scand., 22 (1968) 2653; C.H. Holm and J.A. Ibers, J. Chem. Phys., 30 (1959) 885.
9 B.M. Foxman, Inorg. Chem., 17 (1978) 1932; B.M. Foxman and H. Mazurek, ibid., 18 (1979) 113.
10 International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham England, 1974, pp. 99-101; 148-150.

[^0]: * Dedicated to Professor P.L. Pauson on the occasion of his retirement.

[^1]: ${ }^{a}$ Measured by neutral buoyancy in $\mathrm{KI}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solution. ${ }^{b}$ B.M. Foxman, P.L. Goldberg and H . Mazurek, Inorg. Chem., 20 (1981) 4368; all computations in the present work were carried out using the enraf-nonius Structure Determination Package. ${ }^{\boldsymbol{c}}$ P.W.R. Corfield, R.J. Doedens and J.A. Ibers, Inorg. Chem., 6 (1967) 197. ${ }^{d} R_{\mathrm{av}}=\Sigma\left|I-I_{\mathrm{av}}\right| / \Sigma I ; R=\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right| ; \quad R_{\mathrm{w}}=\left(\Sigma \omega\left[\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right]^{2} / \Sigma w\right.\right.$ $\left.\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2} ; S D U=\left\{\sum w\left[\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right]^{2} /(m-n)\right\}^{1 / 2}$ where $m(=1802)$ is the number of observations and n ($=228$) is the number of parameters.

[^2]: ${ }^{a}$ Atoms refined using anisotropic temperature factors are given in the form of the isotropic equivalent displacement parameter defined as: $1.33\left[a^{2} B_{11}+b^{2} B_{22}+c^{2} B_{33}+a b \cos \gamma B_{12}+a c \cos \beta B_{13}+b c \cos \alpha B_{23}\right]$

